The structure of Lactococcus lactis thioredoxin reductase reveals molecular features of photo-oxidative damage
نویسندگان
چکیده
The NADPH-dependent homodimeric flavoenzyme thioredoxin reductase (TrxR) provides reducing equivalents to thioredoxin, a key regulator of various cellular redox processes. Crystal structures of photo-inactivated thioredoxin reductase (TrxR) from the Gram-positive bacterium Lactococcus lactis have been determined. These structures reveal novel molecular features that provide further insight into the mechanisms behind the sensitivity of this enzyme toward visible light. We propose that a pocket on the si-face of the isoalloxazine ring accommodates oxygen that reacts with photo-excited FAD generating superoxide and a flavin radical that oxidize the isoalloxazine ring C7α methyl group and a nearby tyrosine residue. This tyrosine and key residues surrounding the oxygen pocket are conserved in enzymes from related bacteria, including pathogens such as Staphylococcus aureus. Photo-sensitivity may thus be a widespread feature among bacterial TrxR with the described characteristics, which affords applications in clinical photo-therapy of drug-resistant bacteria.
منابع مشابه
Lactococcus lactis thioredoxin reductase is sensitive to light inactivation.
Thioredoxin, involved in numerous redox pathways, is maintained in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent flavoprotein thioredoxin reductase (TrxR). Here, TrxR from Lactococcus lactis is compared with the well-characterized TrxR from Escherichia coli. The two enzymes belong to the same class of low-molecular weight thioredoxin reductases and display simil...
متن کاملExpanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system
BACKGROUND The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation an...
متن کاملModeling, Mutagenesis and In-silico Structural Stability Assay of the Model of Superoxide Dismutase of Lactococcus Lactis Subsp. Cremoris MG1363
Background:Characterizing the structure and function of superoxide dismutase (SOD), as an antioxidant enzyme providing opportunities for its application in food supplements. Objectives: In this study, the features of the Manganese-SOD of Lactococcus lactis (SDLL), subsp. cremoris MG1363, as probiotic bacteria, were determined on the ...
متن کاملGlutathione protects Lactococcus lactis against oxidative stress.
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to approximately 60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supple...
متن کاملExpression of Brucella abortus Omp25 Protein in Lactococcus lactis Probiotic Bacteria
Background and purpose: The sequence of Omp25 is conserved in all Brucella species. The high antigenicity of the product of this gene stimulates the host’s immune system. Using engineered probiotic bacteria is an appropriate method for vaccine transport. The aim of this study was to express the Omp25 of the Brucella abortus pathogenic bacterium in Lactococcus lactis probiotic bacterium. Materi...
متن کامل